Anloy Technologies is offering packaging of original manufacturers die in many of today's obsolete packages. Below is a list of the 54HC series die that is at the time of drafting this document in Anloy Technologies inventory in production level quantities immediately available for manufacture. Many of these part number dies are available from multiple original manufacturers such as Texas Instruments, National Semiconductor, Motorola, Fairchild Semiconductor, and many others. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

<table>
<thead>
<tr>
<th>Device Offerings</th>
<th>54HC Product Series</th>
<th>AT54HCxxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>54HC00 54HC113 54HC191 54HC365 54HC4049</td>
<td>Anloy Technologies is offering packaging of original manufacturers die in many of today's obsolete packages. Below is a list of the 54HC series die that is at the time of drafting this document in Anloy Technologies inventory in production level quantities immediately available for manufacture. Many of these part number dies are available from multiple original manufacturers such as Texas Instruments, National Semiconductor, Motorola, Fairchild Semiconductor, and many others. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.</td>
<td></td>
</tr>
</tbody>
</table>
The Anloy 82C84A is a high performance CMOS Clock Generator-driver which is designed to service the requirements of both CMOS and NMOS microprocessors such as the 80C86, 80C88, 8086 and the 8088. The chip contains a crystal controlled oscillator, a divide-by-three counter and complete “Ready” synchronization and reset logic. Static CMOS circuit design permits operation with an external frequency source from DC to 25MHz. Crystal controlled operation to 25MHz is guaranteed with the use of a parallel, fundamental mode crystal and two small load capacitors. All inputs (except X1 and RES) are TTL compatible over temperature and voltage ranges. Power consumption is a fraction of that of the equivalent bipolar circuits. This speed-power characteristic of CMOS permits the designer to custom tailor his system design with respect to power and/or speed requirements. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
General Description

The 93L422 is a 1024-bit Read/Write Random Access Memory organized as 256 words by four bits per word. The 93L422 has 3-state outputs, and is designed primarily for buffer control storage and high performance main memory applications. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
General Description

The AT5C1008 SRAM employs high-speed, low power CMOS designs using a four-transistor memory cell, and are fabricated using double-layer metal, double-layer polysilicon technology. For design flexibility in high-speed memory applications, this device offers dual chip enables (CE1, CE2) and output enable (OE). These control pins can place the outputs in High-Z for additional flexibility in system design. All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible. Writing to these devices is accomplished when write enable (WE) and CE1 inputs are both LOW and CE2 is HIGH. Reading is accomplished when WE and CE2 remain HIGH and CE1 and OE go LOW. The devices offer a reduced power standby mode when disabled, allowing system designs to achieve low standby power requirements. The “L” version offers a 2V data retention mode, reducing current consumption to 1mA maximum. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Product Features

- Operating Temperature range of +125°C to -55°C
- Access times of: 12, 15, 20, 25, 30, 35, 45, 55 and 70 ns
- Battery Backup: 2V data retention
- Fast output enable (tAOE) for cache applications
- Low standby power
- Fully static operation, no clock or refresh required
- TTL Compatible Inputs and Outputs
- Easy memory expansion with CE1, CE2, and OE options.
- Single +5V power supply

Die Manufacturers Available

- Samsung
- Cypress
- G-Link

Device Pin Outs

32-Pin DIP (C, CW)

- A16: 31
- A15: 30
- CE2: 29
- WE:
- A14: 28
- A13: 27
- A12: 26
- A11: 25
- A10: 24
- A9: 23
- A8: 22
- A7: 21
- A6: 20
- A5: 19
- A4: 18
- A3: 17
- OE:
- A2: 16
- A1: 15
- A0: 14
- DQ0: 13
- DQ1: 12
- DQ2: 11
- DQ3: 10
- Y16: 9

32-Pin CSOJ (SOJ)

- NC: 32
- VCC:

32-Pin LCC (ECA)

- A16: 31
- A15: 30
- CE2: 29
- WE:
- A14: 28
- A13: 27
- A12: 26
- A11: 25
- A10: 24
- A9: 23
- A8: 22
- A7: 21
- A6: 20
- A5: 19
- A4: 18
- A3: 17
- OE:
- A2: 16
- A1: 15
- A0: 14
- DQ0: 13
- DQ1: 12
- DQ2: 11
- DQ3: 10
- Y16: 9

32-Pin Flat Pack (F)
The AT26LS31 is a quad-differential line driver, designed for digital data transmission over balanced lines. The AT26LS31 meets all the requirements of EIA standard RS-422. It is designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. The circuit provides an enable and disable function common to all four drivers. The AT26LS31 features 3-state output and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are one unit load. The AT26LS31 is constructed using advanced low-power Schottky processing. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
AT26LS32

General Description

The AT26LS32 is a quad differential line receivers designed to meet the RS-422 requirements for balanced and unbalanced digital data transmission. The AT26LS32 has an input sensitivity of 200 mV over the input voltage range of ±7V. The AT26LS32 has an enable and disable function common to all four receivers and features 3-state outputs with 8 mA sink capability. Constructed using low power Schottky processing, these devices are available over the full military and commercial operating temperature ranges. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Product Features

- Operating Temperature range of +125°C to -55°C
- High differential or common-mode input voltage ranges of ±7V on the AT26LS32
- ±0.2V sensitivity over the input voltage range
- Meets all requirements of RS-422
- 6k minimum input impedance
- 100 mV input hysteresis
- Operation from a single 5V supply
- 3-State outputs, with choice of complementary output enables for receiving directly onto a data bus

Die Manufacturers Available

- National Semiconductor

Device Pin Outs

Ceramic LCC - E Suffix

![Ceramic LCC Pinout]

Ceramic Dip - J Suffix

![Ceramic Dip Pinout]

Flat Pack - W Suffix

![Flat Pack Pinout]
The ATM27C64 is a high speed 65,536-bit static complementary MOS erasable and electrically reprogrammable read only memory (EPROM) it is especially well suited for applications where rapid turn around and or bit pattern experimentation and low power consumption are important. The windowed lid allows the user to expose the device to ultra-violet light in order to erase the memory bit pattern previously programmed. At the completion of erasure, a new pattern can then be written to memory. The ATM27C64 is fabricated using CMOS double polysilicon gate technology with single transistor stacked gate cells. It is organized as 8,192 words by 8 bits for use in microprocessor applications. Single +5V operation greatly facilitates its use in systems. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
General Description

The Anloy AT5C2568 SRAM employs high-speed, low power CMOS designs using a four-transistor memory cell, and are fabricated using double-layer metal, double-layer polysilicon technology. For flexibility in high-speed memory applications, Anloy offers chip enable (CE) and output enable (OE) capability. These enhancements can place the outputs in High-Z for additional flexibility in system design. Writing to these devices is accomplished when write enable (WE) and CE inputs are both LOW. Reading is accomplished when WE remains HIGH and CE and OE go LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements. The “L” version provides a battery backup/low voltage data retention mode, offering 2mW maximum power dissipation at 2 volts. All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
The AT5C4008 is a 4 megabit monolithic CMOS SRAM, organized as a 512K x 8. The evolutionary 32 pin device allows for easy upgrades from the 1 meg SRAM. For flexibility in high-speed memory applications, Anloy device offers chip enable (CE\) and output enable (OE\) capabilities. These enhancements can place the outputs in High-Z for additional flexibility in system design. Writing to these devices is accomplished when write enable (WE\) and CE\) inputs are both LOW. Reading is accomplished when WE\) remains HIGH and CE\) and OE\) go LOW. This allows systems designers to meet low standby power requirements. All devices operate from a single +5V power supply and all inputs are fully TTL-Compatible. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
The AT912AXS is a custom replacement device manufactured by Anloy Technologies designed to be a near identical solution for the obsolete ADC912A in applications where the HBEN function of the ADC912 is not required. The AT912AXS is also custom manufactured to exceed the original ADC912A temperature range of -40°C to +85°C and instead is rated for -55°C to +125°C while still maintaining a footprint compatible with the ADC912AFS layout. The Analog input range is pre selected for 0 to +10V operation, other operation ranges are available.

Electrical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity</td>
<td>INL</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>LSB</td>
</tr>
<tr>
<td>Differential Nonlinearity</td>
<td>DNL</td>
<td></td>
<td>-1</td>
<td>+1</td>
<td>LSB</td>
</tr>
<tr>
<td>Offset Error</td>
<td>VZSE</td>
<td>VDD=±5V, VSS=-12V</td>
<td>-5</td>
<td>+5</td>
<td>LSB</td>
</tr>
<tr>
<td>Gain Error</td>
<td>GFSE</td>
<td>VDD=±5V, VSS=-12V</td>
<td>-6</td>
<td>+6</td>
<td>LSB</td>
</tr>
<tr>
<td>Analog Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>VIN</td>
<td></td>
<td>0</td>
<td>10</td>
<td>V</td>
</tr>
<tr>
<td>Input Current Range</td>
<td>IIN</td>
<td></td>
<td>0</td>
<td>3</td>
<td>mA</td>
</tr>
<tr>
<td>Power Supplies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Supply Current</td>
<td>IDD</td>
<td>VDD=+5V</td>
<td>7</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Negative Supply Current</td>
<td>ISS</td>
<td>VSS=-12V</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>PDISS</td>
<td>VDD=±5V, VSS=-12V</td>
<td>155</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR+</td>
<td>ΔVDD=±5%, AIN=10V</td>
<td>4</td>
<td></td>
<td>LSB</td>
</tr>
<tr>
<td></td>
<td>PSRR-</td>
<td>ΔVDD=±5%, AIN=10V</td>
<td>4</td>
<td></td>
<td>LSB</td>
</tr>
</tbody>
</table>

VDD = +5V ± 5%, VSS = -11.4C to -15.75C, VREFIN = -5V, Analog input 0V to 10V, External FCLK = 1.25MHz, Temp Range of -55°C to +125°C unless otherwise noted.
Electrical Specifications

Digital Inputs

<table>
<thead>
<tr>
<th>Logic Input High Voltage</th>
<th>VINH</th>
<th>2.4</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Input Low Voltage</td>
<td>VINL</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Logic Input Current</td>
<td>IIN</td>
<td>±10</td>
<td>μA</td>
</tr>
<tr>
<td>CLIN; VIN = 0 to VDD</td>
<td></td>
<td>±20</td>
<td>μA</td>
</tr>
<tr>
<td>Digital Input Capacitance</td>
<td>CIN</td>
<td>10</td>
<td>pF</td>
</tr>
</tbody>
</table>

Digital Outputs

<table>
<thead>
<tr>
<th>Logic Output High Voltage</th>
<th>VOH</th>
<th>/CS, /RD</th>
<th>4</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Output Low Voltage</td>
<td>VOL</td>
<td>/CS, /RD</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>Three-State Output Leakage</td>
<td>IOZ</td>
<td>/CS, /RD</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Digital Output Capacitance</td>
<td>COUT</td>
<td>Digital Inputs, /CS, /RD, CLIN</td>
<td>15</td>
<td>pF</td>
</tr>
</tbody>
</table>

Dynamic Performance

<table>
<thead>
<tr>
<th>Conversion Time</th>
<th>TC</th>
<th>fCLK = 1.25 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous Clock</td>
<td>10.4</td>
<td>μs</td>
</tr>
<tr>
<td>Asynchronous Clock</td>
<td>10.4</td>
<td>11.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/CS to /RD Setup Time</th>
<th>t1</th>
<th>(Note 3)</th>
<th>0</th>
<th>ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>/RD to /BUSY Propagation Delay</td>
<td>t2</td>
<td>CL = 50 pF</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>Data Access Time After READ</td>
<td>t3</td>
<td>CL = 100 pF (Note 3)</td>
<td>125</td>
<td>ns</td>
</tr>
<tr>
<td>Read Pulse width</td>
<td>t4</td>
<td>(Note 3)</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>/CS to /RD Hold Time</td>
<td>t5</td>
<td>(Note 3)</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>Data Setup after /BUSY</td>
<td>t6</td>
<td>CL = 100 pF</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>Delay between Successive Reads</td>
<td>t10</td>
<td>(Note 3)</td>
<td>350</td>
<td>ns</td>
</tr>
</tbody>
</table>

Note 1: Performance guaranteed over supply range by testing end point errors (power-supply rejection) and the supply extremes

Note 2: VDD=+5V, VSS=-12V, VREF=-5V

Note 3: Guaranteed by Design

Note 4: All inputs are 0V to +5V swing with tr = tf = 5ns (10% to 90% of +5V) and timed from a voltage level of 1.6V

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>VDD to DGND</th>
<th>-0.3V to +7V</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSS to DGND</td>
<td>+0.3V to -7V</td>
</tr>
<tr>
<td>VREFI to DGND</td>
<td>VSS to VDD</td>
</tr>
<tr>
<td>AGND to DGND</td>
<td>-0.3V to VDD +0.3V</td>
</tr>
<tr>
<td>AIN to AGND</td>
<td>-15V to +15V</td>
</tr>
<tr>
<td>Digital Input Voltage to DGND</td>
<td>-0.3V to VDD +0.3V</td>
</tr>
<tr>
<td>Digital Output Voltage to DGND</td>
<td>-0.3V to VDD +0.3V</td>
</tr>
<tr>
<td>Operational Temperature Range</td>
<td>-55°C to +125°C</td>
</tr>
</tbody>
</table>
General Description

The ATCA3046 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially connected pair. The transistors of the ATCA3046 are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits. However, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
General Description

The ATICL7667 is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 15V. Its high speed and current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 15V, the ATICL7667 is well suited for driving power MOSFETs in high frequency switched-mode power converters. The ATICL7667's high current outputs minimize power losses in the power MOSFETs by rapidly charging and discharging the gate capacitance. The ATICL7667's inputs are TTL compatible and can be directly driven by common pulse-width modulation control ICs. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Product Features

- Operating Temperature range of +125°C to -55°C
- Fast Rise and Fall Times: 30ns with 1000pF Load
- Wide 15V Supply Voltage Range: $V_+ = +4.5V$ to +15V, $V_- = -15V$ to Ground (0V)
- Low Power Consumption: 4mW with Inputs Low, 20mW with Inputs High
- TTL/CMOS Input Compatible Power Driver: ROUT = 7Ω Typ
- Direct Interface with Common PWM Control ICs
- Pin Equivalent to DS0026/DS0056; TSC426

Die Manufacturers Available

- Intersil

Device Pin Outs

Ceramic Dip
- MJA Suffix

TO-99
- MTV Suffix

Device Pin Configuration

<table>
<thead>
<tr>
<th>N/C</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>N/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN A</td>
<td>IN B</td>
<td>V-</td>
<td>V+</td>
<td>OUT A</td>
<td>OUT B</td>
<td>N/C</td>
<td></td>
</tr>
</tbody>
</table>

Ceramic Dip

- TOP VIEW

TO-99

- TOP VIEW

1924 American Dr, Lago Vista TX 78645 Ph (512) 388-2313 Fax (512) 388-2781
The ICM7555 is a CMOS RC timer providing significantly improved performance over the standard SE/NE555 and 355 timers, while at the same time being a direct replacement in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crow barring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation. Specifically, the ICM7555 is a stable controller capable of producing accurate time delays or frequencies. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads. For further electrical specifications please reference the original die manufacturers datasheet.
General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors. These amplifiers feature low input bias and offset currents/low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection as in most monolithic amplifiers. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and a low 1/f noise corner. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Additional Information

<table>
<thead>
<tr>
<th></th>
<th>LF155 LF355</th>
<th>LF156 LF356</th>
<th>LF157 LF357 (Av=5)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely fast settling time to 0.01%</td>
<td>4</td>
<td>1.5</td>
<td>1.5</td>
<td>µs</td>
</tr>
<tr>
<td>Fast slew rate</td>
<td>5</td>
<td>12</td>
<td>50</td>
<td>V/µs</td>
</tr>
<tr>
<td>Wide gain bandwidth</td>
<td>2.5</td>
<td>5</td>
<td>20</td>
<td>MHz</td>
</tr>
<tr>
<td>Low input noise voltage</td>
<td>20</td>
<td>12</td>
<td>12</td>
<td>nV/√Hz</td>
</tr>
</tbody>
</table>
The ATLM143 is a general purpose high voltage operational amplifier featuring operation to ±40V, complete input overvoltage protection up to ±40V and input currents comparable to those of other super-b op amps. Increased slew rate, together with higher common-mode and supply rejection, insure improved performance at high supply voltages. Operating characteristics, in particular supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore, gain is unaffected by output loading at high supply voltages due to thermal symmetry on the die. The ATLM143 is pin compatible with general purpose op amps and has offset null capability. Application areas include those of general purpose op amps, but can be extended to higher voltages and higher output power when externally boosted. For example, when used in audio power applications, the ATLM143 provides a power bandwidth that covers the entire audio spectrum. In addition, the ATLM143 can be reliably operated in environments with large overvoltage spikes on the power supplies, where other internally-compensated op amps would suffer catastrophic failure. The ATLM343 is similar to the ATLM143 for applications in less severe supply voltage and temperature environments. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
General Description

The ATLM3086 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Die Manufacturers Available

- National Semiconductor

Product Features

- Operating Temperature range of +85°C to -40°C
- Two matched pairs of transistors
 - VBE matched ±5 mV
 - Input offset current 2 mA max at IC = 1 mA
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure 3.2 dB typ at 1 kHz

Device Pin Outs

![Ceramic Dip - J Suffix Diagram](image-url)
General Description

The ATLM185-1.2 is a two terminal band gap reference diode that has been designed for applications which require precision performance with micropower operation. The device provides guaranteed operating specifications at currents as low as 10mA. The nominal voltage is 1.235V with both 1% and 2% tolerances available. Some additional features are: maximum dynamic impedance of 1W, low noise and excellent stability over time and temperature. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Product Features

- 10mA to 20mA Operating Range
- Guaranteed 1% Initial Voltage Tolerance
- Guaranteed 1W Dynamic Impedance
- Very Low Power Consumption

Die Manufacturers Available

- Linear Tech
- Motorola
- National Semiconductor

Device Pin Outs

![Device Pin Outs Diagram](image-url)
The LM747A is a general purpose dual operational amplifier. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent. Additional features of the LM747A are: no latch-up when input common mode range is exceeded, freedom from oscillations, and package flexibility. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
The ATMC10106 is a triple 4–3–3 input NOR gate. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
The ATMC4741C is a true quad MC1741. Integrated on a single monolithic chip are four independent, low power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance. The ATMC4741C can be used in applications where amplifier matching or high packing density is important. Other applications include high impedance buffer amplifiers and active filter amplifiers. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
General Purpose Operational Amplifier

ATOP02

- **Die Manufacturers Available**
 - Analog Devices

- **Product Features**
 - Operating Temperature range of +125°C to -55°C
 - Excellent DC Specifications
 - Low Noise 0.65μVp-p Typ
 - Low Drift (TCVos) 8μV/°C Max
 - Silicon Nitride Passivation
 - "A" and "non-A" versions available
 - "A" Grade TA=25°C...... Vos Max 0.5 mV
 - "Non-A Grade" TA=25°C...... Vos Max 2.0 mV

- **Device Pin Outs**
 - Ceramic Dip Z Suffix
 - TO-99 J Suffix

General Description

The OP02 is a high performance general purpose operational amplifier that provides significant improvements over industry-standard and premium 741 types while maintaining pin-for-pin compatibility and ease of application. Key specifications such as Vos, Ios, IB, CMRR, PSRR, and Avo are guaranteed over the full operating temperature range. A thermally symmetrical input-stage design provides low input offset voltage drift and insensitivity to output load conditions. The OP-02 is a direct replacement for the 741. It is ideal for upgrading existing designs where accuracy improvements are required and for elimination special low-drift or low-noise selected types. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
Analog Devices

+2.5V Low Power Precision Voltage Reference

ATREF43

Die Manufacturers Available

» Analog Devices

Product Features

» Operating Temperature range of +125°C to -55°C
» +2.5 Volt Output: ±0.05% Max
» Low Temperature Coefficient: 10 ppm/°C Max
» Excellent Regulation
» Load Regulation: 20 ppm/mA Max
» Line Regulation: 2 ppm/V Max
» Supply Current: 450µA Max
» Temperature Voltage Output: +1.9mV/°C
» Operating Voltage Range: +4.5V to +40V
» Wide Common-Mode Voltage
» Range, V– to within 1.5 V of V+
» Pin Compatible with 1458, LM158, LM2904

Device Pin Outs

Ceramic LCC

BRC Suffix

TO-99

J Suffix

General Description

The REF43 is a low power precision reference providing a stable 2.5 V output independent of variations in supply voltage, load conditions or ambient temperature. It is suitable as a reference level for 8-, 10- and 12-bit data acquisition systems, or wherever a stable, known voltage is required. Tight output tolerances and low thermal drift are assured by zener-zap trimming of both output voltage and its temperature coefficient. A unique curvature correction circuit reduces the thermal curvature which is characteristic of many previous bandgap references. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.
Supertex

N-Channel Enhancement-Mode Vertical DMOS FET

ATVN0109

General Description

These enhancement-mode (normally-off) transistors utilize a vertical DMOS structure. This produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown. These vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired. For further electrical specifications please contact Anloy Technologies or reference the original die manufacturers datasheet.

Product Features

- Basic Electrical Characteristics
 - BVDSS/BVDGS 90 V
 - RDS(ON) 3.0Ω max
 - ID(ON) 2.0A min
- Operating Temperature range of +125°C to -55°C
- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low CISS and fast switching speeds
- Excellent thermal stability
- Integral source-drain diode
- High input impedance and high gain

Die Manufacturers Available

- Supertex

Device Pin Outs

TO-52
N9 Suffix
Case: DRAIN

Die Manufacturers Available

- Anloy Technologies
 1924 American Dr, Lago Vista TX 78645 Ph (512) 388-2313 Fax (512) 388-2781